Professor Toole proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph $G = (V, E)$, partition the set of vertices into two sets V_1 and V_2 such that $|V_1|$ and $|V_2|$ differ by at most 1. Let E_1 be the set of edges that are incident only on vertices in V_1, and let E_2 be the set of edges that are incident only on vertices in V_2. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Finally, select the minimum-weight edge in E that crosses the cut (V_1, V_2), and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.

We argue that the algorithm fails. Consider the graph G below. We partition G into V_1 and V_2 as follows: $V_1 = \{A, B\}$, $V_2 = \{C, D\}$. $E_1 = \{(A, B)\}$. $E_2 = \{(C, D)\}$. The set of edges that cross the cut is $E_c = \{(A, C), (B, D)\}$.

![Graph Diagram]

Now, we must recursively find the minimum spanning trees of G_1 and G_2. We can see that in this case, $\text{MST}(G_1) = G_1$ and $\text{MST}(G_2) = G_2$. The minimum spanning trees of G_1 and G_2 are shown below on the left.

The minimum weighted edge of the two edges across the cut is edge (A, C). So (A, C) is used to connect G_1 and G_2. This is the minimum spanning tree returned by Professor O’Toole’s algorithm. It is shown below and to the right.

![Minimum Spanning Tree Diagram]

We can see that the minimum-spanning tree returned by Professor O’Toole’s algorithm is not the minimum spanning tree of G, therefore, his algorithm fails.